Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
1.
J Clin Microbiol ; 62(4): e0165323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38445858

RESUMO

Whole-genome sequencing (WGS) of microbial pathogens recovered from patients with infectious disease facilitates high-resolution strain characterization and molecular epidemiology. However, increasing reliance on culture-independent methods to diagnose infectious diseases has resulted in few isolates available for WGS. Here, we report a novel culture-independent approach to genome characterization of Bordetella pertussis, the causative agent of pertussis and a paradigm for insufficient genomic surveillance due to limited culture of clinical isolates. Sequencing libraries constructed directly from residual pertussis-positive diagnostic nasopharyngeal specimens were hybridized with biotinylated RNA "baits" targeting B. pertussis fragments within complex mixtures that contained high concentrations of host and microbial background DNA. Recovery of B. pertussis genome sequence data was evaluated with mock and pooled negative clinical specimens spiked with reducing concentrations of either purified DNA or inactivated cells. Targeted enrichment increased the yield of B. pertussis sequencing reads up to 90% while simultaneously decreasing host reads to less than 10%. Filtered sequencing reads provided sufficient genome coverage to perform characterization via whole-genome single nucleotide polymorphisms and whole-genome multilocus sequencing typing. Moreover, these data were concordant with sequenced isolates recovered from the same specimens such that phylogenetic reconstructions from either consistently clustered the same putatively linked cases. The optimized protocol is suitable for nasopharyngeal specimens with diagnostic IS481 Ct < 35 and >10 ng DNA. Routine implementation of these methods could strengthen surveillance and study of pertussis resurgence by capturing additional cases with genomic characterization.


Assuntos
Bordetella , Coqueluche , Humanos , Bordetella pertussis/genética , Coqueluche/diagnóstico , Coqueluche/epidemiologia , Filogenia , Genômica , DNA
2.
Arch Pediatr ; 31(3): 172-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490892

RESUMO

Bordetella holmesii is a bacterium recently recognized in 1995. It is a gram-negative coccobacillus that can cause pertussis-like symptoms in humans as well as invasive infections. It is often confused with Bordetella pertussis because routine diagnostic tests for whooping cough are not species-specific. The prevalence of B. holmesii as a cause of pertussis has increased in several countries. Therefore, B. holmesii assays are important for determining the epidemiology of pertussis, for the choice of an effective treatment, and for detecting vaccination failures.


Assuntos
Bordetella , Coqueluche , Humanos , Coqueluche/diagnóstico , Coqueluche/epidemiologia , Coqueluche/prevenção & controle , Bordetella pertussis
3.
J Int Med Res ; 52(1): 3000605231214464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38216150

RESUMO

An increasing number of reports have described the pathogenic nature of several non-classical Bordetella spp. Among them, Bordetella hinzii and Bordetella pseudohinzii have been implicated in a myriad of respiratory-associated infections in humans and animals. We report the isolation of a genetically close relative of B. hinzii and B. pseudohinzii from the sputum of a woman in her early 60s with extensive bronchiectasis who presented with fever and brown colored sputum. The isolate had initially been identified as Bordetella avium by API 20NE, the identification system for non-enteric Gram-negative rod bacteria. Sequencing of the 16S rDNA, ompA, nrdA, and genes used in the Bordetella multilocus sequence typing scheme could not resolve the identity of this Bordetella isolate. Whole-genome single nucleotide polymorphism analysis positioned the isolate between B. hinzii and B. pseudohinzii in the phylogenetic tree, forming a distinct cluster. Whole-genome sequencing enabled the further identification of this rare organism, and should be considered for wider applications, especially the confirmation of organism identity in the clinical diagnostic microbiology laboratory.


Assuntos
Infecções por Bordetella , Bordetella , Bronquiectasia , Infecções Respiratórias , Humanos , Animais , Feminino , Infecções por Bordetella/diagnóstico , Infecções por Bordetella/microbiologia , Filogenia , Bordetella/genética , Bronquiectasia/complicações , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia
4.
Microbiol Immunol ; 68(2): 36-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105571

RESUMO

The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Animais , Humanos , Bordetella bronchiseptica/genética , RNA Polimerase Sigma 54 , Bordetella pertussis/genética , Fatores de Virulência de Bordetella/genética , Fatores de Virulência/genética , Mamíferos
5.
Cell Rep ; 42(11): 113294, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37883230

RESUMO

Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Humanos , Eosinófilos , Infecções por Bordetella/microbiologia , Infecções por Bordetella/prevenção & controle , Reinfecção
6.
Pathology ; 55(1): 117-122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36109195

RESUMO

Bordetella hinzii has emerged as an unusual cause of infection in immunocompromised patients, previously linked to zoonotic transmission. Antimicrobial susceptibility and genetic diversity of B. hinzii are poorly understood. This study reports phenotypic and genomic characteristics of the first four Australian isolates of B. hinzii obtained from elderly immunocompromised patients. Bordetella hinzii isolates were identified by MALDI-TOF and whole genome sequencing (WGS). Antibiotic susceptibility testing was performed using disk diffusion or E-test. Genomes of B. hinzii were analysed in global context. A phylogenetic tree was constructed of all isolates using Roary and a maximum-likelihood tree was generated from the core-snp alignment. Bordetella hinzii minimum inhibitory concentrations (MICs) were largely uniform with high MICs to ampicillin, ceftriaxone and ciprofloxacin and low MICs to meropenem and piperacillin-tazobactam. Genomic analysis of isolate sequences divided strains analysed into two phylogenetically distinct groups, with one Australian B. hinzii isolate (AUS-4) assigned to Group 1, and the remaining isolates (AUS1-AUS3 and AUS-5) to Group 2. Single nucleotide polymorphism (SNP) analysis revealed two isolates, AUS-1 and AUS-2, were closely related with 14 SNP differences between them. All other Australian isolates were unrelated to each and all other isolates from the international dataset. Bordetella hinzii appears to pose a risk to immunocompromised individuals but remains susceptible to extended spectrum ß-lactam and carbapenem antibiotics. Genomic analysis suggested a dissemination of genetically distinct strains.


Assuntos
Bordetella , Infecções Respiratórias , Humanos , Idoso , Filogenia , Austrália , Bordetella/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
8.
Int J Mycobacteriol ; 11(4): 463-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510937

RESUMO

Coinfections/mixed infections are common in the respiratory tract. Many times existing organisms have similar risk factors and clinical features that make the diagnosis difficult. Coronavirus diagnosed in 2019 (COVID-19) and tuberculosis (TB) are two such diseases. Patients with TB have lower cellular immunity and impaired pulmonary function. In such environment, atypical organisms, can infect and make the outcome unfavorable. A 21-year-old malnourished (body mass index- 15 kg/m2) girl presented with fever and cough for 10 days. Sputum for Cartridge Based Nucleic Acid Amplification Test demonstrated Mycobacterium tuberculosis with no rifampin resistance. Fever persisted (100-101°F) and saturation was dropping even after 10 days of antitubercular treatment. A repeat reverse transcription-polymerase chain reaction was done and was positive. In view of persistent symptoms after 20 days, bronchoscopy was done, and cultures showed Bordetella bronchiseptica. Fever and symptoms resolved completely after initiation of the sensitive drug. Diagnostic delay in coinfections can lead to increased morbidity and mortality.


Assuntos
Bordetella , COVID-19 , Coinfecção , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Feminino , Humanos , Adulto Jovem , Adulto , Coinfecção/diagnóstico , Tuberculose Pulmonar/microbiologia , Diagnóstico Tardio , Tuberculose/complicações , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/genética , Escarro/microbiologia
10.
Eur J Clin Microbiol Infect Dis ; 41(10): 1227-1235, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050561

RESUMO

The purpose of this study is to identify predictive factors associated with missed diagnosis of B. pertussis-B. holmesii co-infection by assessing the analytical performance of a commercially available multiplexed PCR assay and by building a prediction model based on clinical signs and symptoms for detecting co-infections. This is a retrospective study on the electronic health records of all clinical samples that tested positive to either B. pertussis or B. holmesii from January 2015 to January 2018 at Geneva University Hospitals. Multivariate logistic regression was used to build a model for co-infection prediction based on the electronic health record chart review. Limit of detection was determined for all targets of the commercial multiplexed PCR assay used on respiratory samples. A regression model, developed from clinical symptoms and signs, predicted B. pertussis and B. holmesii co-infection with an accuracy of 82.9% (95% CI 67.9-92.8%, p value = .012), for respiratory samples positive with any of the two tested Bordetella species. We found that the LOD of the PCR reaction targeting ptxS1 is higher than that reported by the manufacturer by a factor 10. The current testing strategy misses B. pertussis and B. holmesii co-infections by reporting only B. holmesii infections. Thus, we advocate to perform serological testing for detecting a response against pertussis toxin whenever a sample is found positive for B. holmesii. These findings are important, both from a clinical and epidemiological point of view, as the former impacts the choice of antimicrobial drugs and the latter biases surveillance data, by underestimating B. pertussis infections during co-infections.


Assuntos
Infecções por Bordetella , Bordetella , Coinfecção , Coqueluche , Bactérias Aeróbias , Bordetella/genética , Infecções por Bordetella/diagnóstico , Infecções por Bordetella/epidemiologia , Infecções por Bordetella/microbiologia , Bordetella pertussis/genética , Coinfecção/diagnóstico , DNA Bacteriano/análise , Fator X , Humanos , Diagnóstico Ausente , Toxina Pertussis , Estudos Retrospectivos , Coqueluche/microbiologia
11.
Microbiol Spectr ; 10(5): e0144322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040173

RESUMO

Bordetella bronchiseptica injects virulence proteins called effectors into host cells via a type III secretion system (T3SS) conserved among many Gram-negative bacteria. Small proteins called chaperones are required to stabilize some T3SS components or localize them to the T3SS machinery. In a previous study, we identified a chaperone-like protein named Bcr4 that regulates T3SS activity in B. bronchiseptica. Bcr4 does not show strong sequence similarity to well-studied T3SS proteins of other bacteria, and its function remains to be elucidated. Here, we investigated the mechanism by which Bcr4 controls T3SS activity. A pulldown assay revealed that Bcr4 interacts with BscI, based on its homology to other bacterial proteins, to be an inner rod protein of the T3SS machinery. An additional pulldown assay using truncated Bcr4 derivatives and secretion profiles of B. bronchiseptica producing truncated Bcr4 derivatives showed that the Bcr4 C-terminal region is necessary for the interaction with BscI and activation of the T3SS. Moreover, the deletion of BscI abolished the secretion of type III secreted proteins from B. bronchiseptica and the translocation of a cytotoxic effector into cultured mammalian cells. Finally, we show that BscI is unstable in the absence of Bcr4. These results suggest that Bcr4 supports the construction of the T3SS machinery by stabilizing BscI. This is the first demonstration of a chaperone for the T3SS inner rod protein among the virulence bacteria possessing the T3SS. IMPORTANCE The type III secretion system (T3SS) is a needle-like complex that projects outward from bacterial cells. Bordetella bronchiseptica uses the T3SS to inject virulence proteins into host cells. Our previous study reported that a protein named Bcr4 is essential for the secretion of virulence proteins from B. bronchiseptica bacterial cells and delivery through the T3SS. Because other bacteria lack a Bcr4 homologue, the function of Bcr4 has not been elucidated. In this study, we discovered that Bcr4 interacts with BscI, a component of the T3SS machinery. We show that a B. bronchiseptica BscI-deficient strain was unable to secrete type III secreted proteins. Furthermore, in a B. bronchiseptica strain that overproduces T3SS component proteins, Bcr4 is required to maintain BscI in bacterial cells. These results suggest that Bcr4 stabilizes BscI to allow construction of the T3SS in B. bronchiseptica.


Assuntos
Bordetella bronchiseptica , Bordetella , Animais , Sistemas de Secreção Tipo III/metabolismo , Bordetella/metabolismo , Bordetella bronchiseptica/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mamíferos/metabolismo
12.
Comput Math Methods Med ; 2022: 1679951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756428

RESUMO

Objective: To evaluate and expand the automatic identification and clustering of clinical Bordetella species by MALDI-TOF MS. Methods: Twenty-eight field isolated strains, identified by whole-gene sequencing analysis, were analyzed by MALDI-TOF MS, and the spectra obtained were used to replenish the internal database of the manufacturer. To evaluate and expand the robustness of the database, MALDI-TOF MS identified 91 clinical isolates (except those used for implementation). A distance tree based on mass spectrometry data is constructed to confirm similarity and clusters of each clinical Bordetella species by using the MALDI Biotyper 3.1 software. Results: In this research, when we used the implemented Bruker Daltonics database in our laboratory, 91 clinical isolates were identified at the genus level (100%) and 93.4% were identified at the species level (85/91). We performed proteomics analysis and divided these 91 isolates into cluster I (2.2%) and cluster II (97.8%). The largest group is cluster II (n = 89 isolates), which has been divided into two subclusters. Trees created by analyzing the protein mass spectra of the three species of the clinical isolates reflected their classification. Conclusion: MALDI-TOF MS may present an attractive alternative to automatically confirm and cluster the fastidious bacteria difficult to culture. Extension of identification of the MALDI-TOF MS database is viably fast, more efficient, and alternative to conventional methods in confirming the classical Bordetella species. This strategy could promote the epidemiological and taxonomic research of this important pathogen.


Assuntos
Bordetella , Técnicas de Tipagem Bacteriana/métodos , Bordetella/genética , Bases de Dados Factuais , Humanos , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
Sci Rep ; 12(1): 8439, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589928

RESUMO

Contamination of soil by antibiotics and heavy metals originating from hospital facilities has emerged as a major cause for the development of resistant microbes. We collected soil samples surrounding a hospital effluent and measured the resistance of bacterial isolates against multiple antibiotics and heavy metals. One strain BMCSI 3 was found to be sensitive to all tested antibiotics. However, it was resistant to many heavy metals and metalloids like cadmium, chromium, copper, mercury, arsenic, and others. This strain was motile and potentially spore-forming. Whole-genome shotgun assembly of BMCSI 3 produced 4.95 Mb genome with 4,638 protein-coding genes. The taxonomic and phylogenetic analysis revealed it, to be a Bordetella petrii strain. Multiple genomic islands carrying mobile genetic elements; coding for heavy metal resistant genes, response regulators or transcription factors, transporters, and multi-drug efflux pumps were identified from the genome. A comparative genomic analysis of BMCSI 3 with annotated genomes of other free-living B. petrii revealed the presence of multiple transposable elements and several genes involved in stress response and metabolism. This study provides insights into how genomic reorganization and plasticity results in evolution of heavy metals resistance by acquiring genes from its natural environment.


Assuntos
Metais Pesados , Solo , Antibacterianos , Bordetella , Genômica , Hospitais , Metais Pesados/toxicidade , Filogenia
15.
Emerg Infect Dis ; 28(4): 844-847, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318919

RESUMO

Patients infected with severe acute respiratory syndrome coronavirus 2 might have bacterial and fungal superinfections develop. We describe a clinical case of coronavirus disease with pulmonary aspergillosis associated with Bordetella hinzii pneumonia in an immunocompetent patient in France. B. hinzii infections are rare in humans and develop secondary to immunosuppression or debilitating diseases.


Assuntos
Bordetella , COVID-19 , Pneumonia , Humanos , SARS-CoV-2
17.
Res Microbiol ; 173(4-5): 103937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248703

RESUMO

Current vaccines against Bordetella pertussis do not prevent colonization and transmission of the bacteria, and vaccine-induced immunity wanes rapidly. Besides, efficacy of vaccines for Bordetella bronchiseptica remains unclear. Novel vaccines could be based on outer-membrane vesicles (OMVs), but vesiculation of bordetellae needs to be increased for cost-effective vaccine production. Here, we focused on increasing OMV production by reducing the anchoring of the outer membrane to the peptidoglycan layer. Inactivation of rmpM, tolR, and pal failed, presumably because their products are essential in bordetellae. Conditional pal mutants were constructed, which were hypervesiculating under Pal-depletion conditions. SDS-PAGE and Western blot analyses showed that the protein composition of OMVs produced under Pal-depletion conditions resembled that of the outer membrane but differed from that of OMVs released by the wild type. Pal depletion affected the cell morphology and appeared to increase the amounts of cell-surface-exposed phospholipids, possibly reflecting a role for the Tol-Pal system in retrograde phospholipid transport. We also identified additional lipoproteins in bordetellae with a putative peptidoglycan-anchoring domain. However, their inactivation did not influence OMV production. We conclude that the conditional pal mutants could be valuable for the development of OMV-based vaccines.


Assuntos
Bordetella , Peptidoglicano , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella/metabolismo , Lipoproteínas/genética , Lipídeos de Membrana
18.
Nat Commun ; 13(1): 693, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121734

RESUMO

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Assuntos
Bordetella/crescimento & desenvolvimento , Mucosa Intestinal/citologia , Rhabditoidea/citologia , Animais , Bordetella/classificação , Bordetella/patogenicidade , Divisão Celular/genética , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Mucosa Intestinal/microbiologia , Espaço Intracelular/microbiologia , Redes e Vias Metabólicas/genética , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética , Rhabditoidea/genética , Rhabditoidea/microbiologia , Análise de Sequência de DNA , Virulência
19.
Front Cell Infect Microbiol ; 12: 798317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223538

RESUMO

A variety of bacteria have evolved the ability to interact with environmental phagocytic predators such as amoebae, which may have facilitated their subsequent interactions with phagocytes in animal hosts. Our recent study found that the animal pathogen Bordetella bronchiseptica can evade predation by the common soil amoeba Dictyostelium discoideum, survive within, and hijack its complex life cycle as a propagation and dissemination vector. However, it is uncertain whether the mechanisms allowing interactions with predatory amoebae are conserved among Bordetella species, because divergence, evolution, and adaptation to different hosts and ecological niches was accompanied by acquisition and loss of many genes. Here we tested 9 diverse Bordetella species in three assays representing distinct aspects of their interactions with D. discoideum. Several human and animal pathogens retained the abilities to survive within single-celled amoeba, to inhibit amoebic plaque expansion, and to translocate with amoebae to the fruiting body and disseminate along with the fruiting body. In contrast, these abilities were partly degraded for the bird pathogen B. avium, and for the human-restricted species B. pertussis and B. parapertussis. Interestingly, a different lineage of B. parapertussis only known to infect sheep retained the ability to interact with D. discoideum, demonstrating that these abilities were lost in multiple lineages independently, correlating with niche specialization and recent rapid genome decay apparently mediated by insertion sequences. B. petrii has been isolated sporadically from diverse human and environmental sources, has acquired insertion sequences, undergone genome decay and has also lost the ability to interact with amoebae, suggesting some specialization to some unknown niche. A genome-wide association study (GWAS) identified a set of genes that are potentially associated with the ability to interact with D. discoideum. These results suggest that massive gene loss associated with specialization of some Bordetella species to a closed life cycle in a particular host was repeatedly and independently accompanied by loss of the ability to interact with amoebae in an environmental niche.


Assuntos
Amoeba , Bordetella bronchiseptica , Bordetella , Dictyostelium , Amoeba/microbiologia , Animais , Bordetella/genética , Bordetella bronchiseptica/genética , Dictyostelium/microbiologia , Estudo de Associação Genômica Ampla , Ovinos/genética
20.
J Vet Med Sci ; 84(4): 574-581, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35153249

RESUMO

Bordetella bronchiseptica (B. bronchiseptica) is associated with respiratory tract infections in laboratory animals. In our laboratory animal facility, B. bronchiseptica was isolated from 21 of 27 apparently healthy rabbits obtained from a breeding farm contaminated with B. bronchiseptica. Restriction fragment length polymorphism (RFLP) analysis showed that the flagellin genotype of isolates from the laboratory animal facility and breeding farm was type A, which is seen relatively frequently in rabbits in Europe. To examine its pathogenicity, guinea pigs, rats, and mice were inoculated intranasally with a representative strain isolated in the laboratory animal facility. Following inoculation of 107 colony forming unit (cfu), severe inflammation was observed in the lungs of guinea pig and mice, although the inflammation was less severe in rats. The strain was recovered from the trachea and lungs of these species after inoculation with lower dose such as 103 or 104 cfu. These results suggest that the isolated strain causes respiratory tract infection in guinea pigs, rats, and mice, and that its pathogenicity higher in mice than in rats. This study extends our knowledge of interpreting the microbiologic status of laboratory animals, which will contribute to the development of reliable and reproducible animal experiments.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Infecções Respiratórias , Doenças dos Roedores , Animais , Animais de Laboratório , Infecções por Bordetella/microbiologia , Infecções por Bordetella/veterinária , Bordetella bronchiseptica/genética , Cobaias , Inflamação/veterinária , Camundongos , Coelhos , Ratos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...